Background
Bovine TB (BTB), caused by infection with Mycobacterium bovis, is a major endemic disease affecting global cattle production, particularly in many developing countries. The key innate immune that first encounters the pathogen is the alveolar macrophage, previously shown to be substantially reprogrammed during intracellular infection by the pathogen. Here we use differential expression, and correlation- and interaction-based network approaches to analyse the host response to infection with M. bovis at the transcriptome level to identify core infection response pathways and gene modules. These outputs were then integrated with genome-wide association study (GWAS) data sets to enhance detection of genomic variants for susceptibility/resistance to M. bovis infection.
Results
The host gene expression data consisted of bovine RNA-seq data from alveolar macrophages infected with M. bovis at 24 and 48 hours post-infection. These RNA-seq data were analysed using three distinct analysis pipelines and novel response pathways and modules were further refined using cross-comparison and integration of the results. First, a differential expression analysis was carried out to determine the most significantly differentially expressed (DE) genes between conditions at each time point. Second, two networks were constructed at each time point using gene correlation patterns to determine changes in expression across conditions. Functional sub-modules within each correlation network were selected by statistical criteria for modularity. Third, a base gene interaction network of the mammalian host response to mycobacterial infection was generated using the GeneCards database and InnateDB. Differential gene expression data were superimposed on this base network to extract functional modules of interconnected DE genes.
Conclusions
Bovine GWAS data was obtained from a published BTB susceptibility/resistance study. The results from the three parallel analyses were integrated with this data to determine which of the three approaches identified genes significantly enriched for SNPs associated with susceptibility/resistance to M. bovis infection. Results indicate distinct and significant overlap in SNP discovery, demonstrating that network-based integration of biologically relevant transcriptomics data can leverage substantial additional information from GWAS data sets.